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A mechanism is proposed for the effective free sliding of columns in an ordered columnar liquid crystal.
Both positional and rotational degrees of freedom are involved and the free sliding, if it exists, would result
from the shear deformation being accompanied by a rotational deformation of the opposite sign. Diagonaliza-
tion of the rotational-positional total elastic energy leads to an effective curvature elastic term involving
displacements in the columnar direction. Under such conditions, a quasi-long-range order of the positions of
the molecules in the columnar direction would result.@S1063-651X~96!51711-3#

PACS number~s!: 61.30.Cz, 61.30.Gd, 64.60.Cn, 64.70.Rh

The existence of columnar liquid crystal phases between
the liquid and crystal phases for certain compounds com-
posed of disk-shaped molecules is now very well established
@1#. It is basically characterized by lattice ordering, in two
dimensions, of liquidlike columns extending in the third di-
mension. There do exist cases@2#, however, where high reso-
lution x-ray results clearly established the existence of a
phase with at least a partial ordering of both the positional
and orientational degrees of freedom of the molecules inside
the columns. This phase is often referred to as anH phase or
aDho phase. Up to now, detailed high resolution x-ray stud-
ies of the ordered columnar phase have been only very few
@3#. The conjecture is that the positional and orientational
orderings are general behaviors for theDho phase to exist.
However, the classification of this phase as a crystal phase or
as a liquid crystal phase remains open@1,4–6#. Indeed with a
root-mean-square displacement of the molecules in the co-
lumnar direction exceeding 30% of the intermolecular sepa-
ration in this direction, the Lindemann melting formula@7#
would generally be satisfied.

The continuum elasticity formalism, used up to now to
understand the static deformation instabilities@8,9# and the
Rayleigh scattering@10# in these systems, is based solely on
the positional degrees of freedom, giving rise to the usual
elastic energy terms from first-order derivatives and curva-
ture terms from higher-order derivatives. The central ques-
tion is the value of the shear elastic constantC5 for columns
sliding on each other in the direction of the columns in a
hexagonal structure, a nonzero positive value of this last
quantity leading to the stability of the three-dimensional
crystal phase. As indicated above@2#, in theDho phase, the
internal rotational degrees of freedom of the molecules, in
the plane perpendicular to the columnar direction, are ex-
pected to play an important and essential role. In typical
systems showing theDho phase, nematic ordering is assumed
to achieve its maximum value. In this Rapid Communica-
tion, it is shown that invoking a contribution to the total
elastic energy from the rotational degrees of freedom allows

for a mechanism for the vanishing of an effective shear elas-
tic constantC5

e with, however, the subsequent appearance of
quasi-long-range order in the positions of the molecules
along the columns. In this framework, the mean-square fluc-
tuation of the displacements of the molecules in the direction
of the columns is calculated and is shown to have a large
relative value in good agreement with existing experimental
data@2#. Contributions to the x-ray diffraction intensity com-
ing from the thermal diffuse scattering under these condi-
tions is predicted to turn the Bragg peaks into Bragg maxima
with typical long tail decreases in reciprocal space. Finally,
long-range orientational order is shown to be persistent.

Guided by the experimentally observed ordered structure
proposed by Fonteset al. @2# for the H phase of the hexa-
hexylthiotriphenylene compound~HHTT!, we have studied
@11# the fundamentals of the reconstructed three-column su-
perlattice. This calculation allows for both helical ordering of
a finite pitchP of the rotational degrees of freedom and a
helicity pattern of three columns. We retain from this calcu-
lation and the experimental results of Fonteset al. @2# that
the three-column superlattice sets in a helicity pattern also of
period-3.

For the above helically ordered equilibrium conformation,
based on the total rotationnal invariance in the basal triangu-
lar plane, the orientational elastic energy densityEo(r ), in-
cluding the coupling to the positional degrees of freedom, is
written as
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wherew5w(r ) is the angular variable specifying the rota-
tion, in the plane perpendicular to the columns, with respect
to the equilibrium conformation. Thez axis is taken along
the columnar direction and thexy plane spans the triangular
lattice. wa is a short notation for]w/]xa with a5x, y, or
z. wab is a similar definition for the second-order derivatives.
eab is the strain tensor components for the positional degrees
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of freedom. Notice the presence of terms linear in the gradi-
ents ofw which is a consequence of helically ordered equi-
librium configuration. The first two terms of Eq.~1! are the
two lowest-order terms resulting from the gradient ofw(r )
subjected to uniaxial symmetry of the system. The terms
with theKi coefficients are curvature terms for the orienta-
tional degrees of freedom. Starting from the microscopic
Hamiltonian@11#, the different parameters appearing in Eq.
~1! have been calculated@12# and are shown to be the domi-
nant terms coupling the positional and orientational degrees
of freedom. The energy densityEo(r ) describes slowly vary-
ing angular fluctuations of an helically ordered equilibrium
configuration which retain in the long wavelength limit, the
relative orientations of the three columns for the particular
helicity pattern. As such they may be classified as ‘‘soft de-
formations’’ @13#. Fluctuations not conserving the relative
orientations of the three columns and excitations having a
soliton nature are not included since these ‘‘hard deforma-
tions’’ are expected to have an energy gap in the long wave-
length limit and not contribute to destabilize the ground state
configuration. To Eq.~1! is added the positional elastic en-
ergy densityEe(r ) for a crystal of uniaxial symmetry@14#
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whereCi are the elastic constants, stressing thatC5 is the
shear elastic constant for the columns being displaced paral-
lel to each other in the columnar direction. A term linked to
the bending of the columns has been omitted in Eq.~2! and
may be shown to play no role in the mechanism proposed
below. Indeed, the tilt of the molecules along bended col-
umns is uncoupled to the displacements in the columnar di-
rection to second order.

In Fourier space, the total elastic energy becomes
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(uq'
,uu ,uz) are theq components of displacement in cylin-

drical coordinates.q' is the vector component ofq perpen-
dicular to the columns. Re(b) stands for the real part ofb.
Two successive changes of variables@4# are necessary to
diagonalize Eq.~3!. First, the orientational variables are
transformed according to
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Second, the diagonalization betweenuz(q) and uq'
(q) is

completed by the transformation
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The total elastic energy, in its diagonal form, becomes
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The lowest-order terms, up to fourth order, for the coef-
ficient of uuz(q)u2 are
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At this point, we bring into the model the central hypothesis
which will characterize theH phase of a columnar liquid
crystal from an elastic point of view:in this phase, the col-
umns slide on each other freely, having an effective shear
elastic constant C5

e (C5
e5C52B2

2/4A1) equal to zero. This
is achieved by overall minimization of the total energy in the
hexagonal ordered phase consequently determining the angu-
lar and positional characteristic lengths~pitch P and lattice
spacings!. In cases where such a minimization is not pos-
sible, the system would go directly from the disordered hex-
agonal phase to the crystal phase, a situation which cannot be
rejected in the absence of a symmetry argument that would
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lead to ana priori vanishing of the shear elastic constant. As
seen above, it is the coupling of the rotational degrees of
freedom and vertical displacements which allows the above
hypothesis to be realized. The justification for this hypothesis
is a posteriori and was initially formulated on the basis of
large values of the observed mean-square fluctuations of the
positions of the molecules in the columns@2#. In any case
there are good reasons to expect thatC5 is small in these
systems, the main one being the lubrification role played by
then ~usuallyn56! partially flexible long chains attached to
the hard cores and separating the columns. With this assump-
tion, the coefficient ofuuz(q)u2 becomes
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wherekB is Boltzmann’s constant,qc is a wave number of
the order of the inverse of a molecular length in the columnar
direction, andL is the size of the sample in the same direc-
tion. In agreement with de Gennes and Prost@4# we conclude
with the absence of conventional long-range order in the co-
lumnar direction. However, we propose that quasi-long-
range order exists wherêuz

2(r )& diverge logarithmically
with the sizeL of the sample columnar direction. Using the
microscopic Hamiltonian@11# and the angular and distance
dependences of the intermolecular interaction parameters
calculated by Cotraitet al. @15# for disklike molecules of the
same family as the HHTT compound, the value of the pa-
rameterK is estimated to be of the order of 931026 erg/cm.
Using a typical value forC1 (C1 5 108 erg/cm3) and
L51 mm, we get forA^uz

2& a value of the order of 1 Å at 60
°C. It may be easily seen from Eqs.~7!, ~3c!, and ~6b! that
the average values of the squares ofuuq'

8 (q)u, uuu(q)u, and
uC(q)u stay finite asL→`, in every case leading to a local
fluctuation which is bounded and a small fraction of the
range of definition of the variable. Such a general behaviour
is observed experimentally in the high resolution x-ray re-
sults for the HHTT compound@16# in theH phase. Indeed
the rms positional motions in both the columnar and basal
directions are of the order of 1 to 2 Å, a large fraction of the
intermolecular intracolumnar distance (d53.64 Å) and a
small fraction of the intercolumnar distance~typically 22
Å). As to the rms rotational fluctuations, a small value of the
order of 5 to 10° is observed.

The most spectacular manifestation of the quasi-long-
range order for the vertical displacementuz(r ) shall appear
in the shape of the Bragg maxima, as exemplified in a similar
situation of algebraic decay of the correlation function in
smectic A @17,18#. The x-ray scattering intensity is calcu-
lated for a three column triangular superlattice, all columns
having an identical helicity and pitchP. The molecules are
described by an angular octupolar moment. Contributions to
the thermal diffuse scattering, in the neighborhood of a

Bragg peak, from the fluctuating values ofuuq'
8 (q)u,

uuu(q)u, anduC(q)u behave in the traditional manner, giving
rise to a Debye-Waller factor for the intensity maxima and a
q22 decrease away from the Bragg peak positions. For
Bragg peaks outside the basic plane and in particular the
Bragg peak related to the periodicity of helical structure, the
signature of the algebraic decrease of the correlation function
manifests itself. Indeed for a momentum transfer given by

q5Ghk13S 2p

P D ẑ1q'1qzẑ, ~12!

whereGhk are the reciprocal lattice vectors for the recon-
structed two-dimensional triangular lattice andq' andqz are
now measured relative to the Bragg peak positions, we get
that the intensity of diffused x ray has the following behav-
ior:
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The parameterh is then given by
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Fluctuations ofuz(r ) being Gaussian, the parametersh for
the successive Bragg maxima will increase as the square of
the z component of the related Bragg peaks in reciprocal
space. For the values ofK and C1 used above and
P;25 Å @2#, the dimensionless parameterh is of the order
of 0.4, a value obtained with no adjustable parameters.

The above predictions for the x-ray scattering intensity
are reached under the assumption that the effective shear
elastic constantC5

e vanishes in theH phase. As seen from
the coupling term proportional toB2 in Eq. ~1!, a relative
vertical displacement of two columns is accompanied by a
rotational displacement with the opposite sign. This fact is
verified experimentally@16#. At this point, it is in order to
recall that the three column reconstruction mentioned above
@2# releases, at least partially, the geometrical frustration
present for octupolar molecules on a triangular lattice. A
simple model of gears and propellors on the resulting hon-
eycomb lattice shows that the vertical displacement of one of
the columns is favored energitically by a rotation of the op-
posite sign.

This sliding-rotating mechanism that allows the effective
elastic constantC5

e to vanish induces an effective curvature
term which according to Eq.~10! could be written as

KS ]2uz~r !
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It originates from the rotational degrees of freedom and the
coupling to the positional degrees of freedom. The existence
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of such a term, by analogy with smecticA, would be at the
origin of the quasi-long-range behavior. Based on the experi-
mental evidences mentioned above and the main conclusion
of the present calculation, we propose that this fundamental
behavior be looked at for using a high resolution x-ray analy-
sis of the Bragg maxima in reciprocal space.

Notice that for columnar liquid crystals where the mol-
ecules would not be driven in equilibrium into a helical ori-
entational structure, the curvature term~15! would be absent
since its origin is the coupling terms in Eq.~1! permitted
only because of the presence of helices. Subsequently, the

ordered columnar phase would not be stabilized, at least by
the above mechanism. It is also to be recalled that the cur-
vature term linked to the bending of the columns is unable to
stabilize quasi-long-range order in the direction of the col-
umns.
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